CSCI 4239/5239 Advanced Computer Graphics Spring 2025

Instructor

- Willem A (Vlakkies) Schreüder
- Email: vlakkies@colorado.edu
 - Begin subject with 4239 or 5239
 - Resend email not answered promptly
- Office Hours:
 - Monday 3-4pm by Zoom
 - Thursday 2-3pm by Zoom or in ECOT 732
 - Other times by appointment
- Weekday Contact Hours: 6:30am 9:00pm

Course Objectives

- Explore advanced topics in Computer Graphics
 - Pipeline Programming (Shaders)
 - Embedded System (OpenGL ES)
 - GPU Programming (CUDA&OpenCL)
 - Ray Tracing
 - Special topics
- Assignments: Practical OpenGL
 - Building useful applications
 - Use GLFW to build programs

Course Organization

- Tuesday: Introduction of next topic
 - Lecture
 - Example programs
- Thursday:
 - Discussion of previous homework
 - Presentations

Ungrading

- You self-assign the final grade
 - I may adjust it if I disagree
- Before each Thursday class period
 - Set SMART goals for the next week
 - Evaluate your goals from the pervious week
 - Keep a record of these weekly evaluations that I will review with you as part of the final project during the last week of class
 - This should be a 10 minute activity

S.M.A.R.T. Goals

- Summarize your goals each week
 - Specific what you want to achieve
 - Measureable evaluating success
 - Achievable doable in a week/semester
 - Relevant somewhat on topic
 - Timely plan your week
- You weekly journal should follow this pattern

Assumptions

- You need to be fluent in C/C++
 - Examples are in C or C++
 - You can do assignments in any language
 - I may need help getting it to work on my system
- You need to be comfortable with OpenGL
 - CSCI 4229/5229 or equivalent
 - You need a working OpenGL environment

Class Attendance

- Attendance is expected
 - I don't typically take attendance
- More of a seminar than a lecture
 - Participation is important
- If you are legitimately sick, use Zoom
 - Email me well before class
 - I will record the lecture if there is a compelling reason

Assignment Expectations

- The goal is to impress your friends
- Assignments **must** be submitted on time unless prior arrangements are made
 - Due by 23:59 Wednesday
 - Grace period until Thursday at 8:00am
- Assignments must be completed individually
 - Stealing ideas are encouraged
 - Code reuse with attribution is permitted
- I will review your submissions before class

Code Reuse

- Code from the internet or class may be used
 - You take responsibility for any bugs in the code
 - That includes bugs in my code
 - Make the code your own
 - Understand it
 - Format it consistently
 - Improve upon what you found
 - I may ask what improvements you made
 - Submitting code without crediting the source is violation of the CU honor code
- The assignment is a minimum requirement

Code Expectations

- I expect professional standards in coding
 - Informative comments
 - Consistent formatting
 - Expand tabs
 - Clean code
 - Clean out unused code
- Good code organization
- Appropriate to the problem at hand
- See *Expectations* on Canvas
- You need to understand *every line*

Text

- OpenGL Programming Guide (9ed)
 - Kessenich, Sellers & Schreiner
 - "OpenGL Vermillion Book"
 - Implementing Shaders using GLSL
 - Don't get an older edition
- Ray Tracing from the Ground Up
 - Kevin Suffern
 - Theory and practice of ray tracing
- Recommended by not required

- OpenGL SuperBible: Comprehensive Tutorial and Reference (7ed)
 - Sellers, Wright & Haemel
 - Good all-round theory and applications
- Graphics Shaders: Theory and Practice (2ed)
 - Bailey & Cunningham
 - Great shader examples

- OpenGL ES 3.0 Programming Guide
 - Ginsburg & Purnomo
 - "OpenGL Purple Book"
 - Has a chapter specific to the iPhone
- WebGL Programming Guide
 - Matsuda & Lea

- Programming Massively Parallel Processors
 - Kirk & Hwu
 - Explains GPU programming using CUDA
 - Shows how to adopt OpenCL
- CUDA by Example
 - Sanders and Kandrot
 - Great introduction using examples

- Advanced Graphics Programming Using OpenGL
 - Tom McReynolds and David Blythe
 - Great reference for miscellaneous advanced topics
- Physically Based Rendering
 - Pharr, Jakob and Humpfreys
 - Only for PBRT homework
 - 3rd edition for PBRTv3

OpenGL Resources

- www.google.com
 - Need I say more?
- www.opengl.org
 - Code and tutorials
- nehe.gamedev.net www.lighthouse3d.com
 - Excellent tutorials
- www.mesa3d.org
 - Code of "internals"
- www.prinmath.com/csci5229
 - Example programs from CSCI 4229/5229

Assignment 0

- Due: **Today Jan 14** by 23:59
- Check your Canvas notification settings
 - Set notifications to immediate
- Submit
 - Current picture
 - Your study area
 - Platform (Hardware, Graphics, OS, ...)
 - Why are you taking this class?
 - Does office hours work for you?

My information

- Mathematical modeling and data analysis
 - PhD Computational Fluid Dynamics [1986]
 - PhD Parallel Systems (CU Boulder) [2005]
 - President of Principia Mathematica
- Use graphics for scientific visualization
- Open source bigot
- Program in C, C++, Fortran, Perl & Python
- Outside interests
 - Aviation
 - Amateur radio

Hardware Requirements

- You need hardware that will run shaders well
 - Integrated graphics may be marginal
 - Graphics cards from the last 5 years should be OK
 - GPU computing needs high end hardware
 - A VM is probably not going to cut it
- Try on different hardware
 - AMD/nVidia/Intel sometimes behave differently
 - I have nVidia hardware

Examples use glfw

- Why drop GLUT?
 - Apple support for GLUT is waning
 - It is easy to use, but limited capabilities
- Why glfw
 - It is cross platform: Linux/WinX/OSX/iOS/...
 - Very light weight wrapper to OpenGL
 - Does not do sound, load images, etc
 - Actively being developed (Vulcan is coming...)
- Can I use SDL or another wrapper?
 - As long as it is cross platform

Installing glfw

- http://www.glfw.org/
- Ubuntu:
 - apt-get install glfw3-dev
- OSX
 - Install Xcode with command line tools
 - Install homebrew
 - Install toolchain, glfw and glew
- Windows
 - Install MSYS2/MinGW
 - Install toolchain, glfw and glew with pacman

OpenGL Extension Wrangler (GLEW)

- Maps OpenGL extensions at run time
 - Provides headers for latest OpenGL
 - Finds vendor support at run time
- Check support for specific functions or OpenGL version at run time
 - Crashes if unsupported features are used
- Use only if you have to (Windows mostly)
 - Set -dUSEGLEW to selectively invoke it
 - Do NOT require GLEW (I don't need it)
 - See Canvas for installation instructions

CSCIx239 Library

- Includes GLFW and GLEW headers
- Many convenience functions
 - InitWindow starts GLFW and GLEW
 - Projection, Print, Fatal, ErrCheck, ...
 - Load textures and OBJs
 - Simple objects (Cube, Sphere, ...)
 - Compile Shaders
 - Matrix operations
 - Performance (FPS, elapsed)
- Make sure you know what it does

OpenGL Verions

- I will use different OpenGL versions depending on what is convenient for the problem at hand
 - OpenGL 2.x
 - Feature rich
 - Flat learning curve
 - Convenient in many applications
 - OpenGL 3.x or OpenGL 4.x
 - Somewhat different syntax
 - Needed for advanced shaders
- OpenGL Core & Compatibility Profiles
- You can use whatever version you want

Assignment 1

- Due: Tomorrow Wednesday January 15
- NDC to RGB shader
 - For every point on the objects, the color should be determined by its position in normalized device coordinates
- The goal is to make this as short and elegant as possible
 - Shader Golf
 - Figure this out for yourself
 - Make every operation count
- Test your toolchain

Nuts and Bolts

- Complete assignments on any platform
 - Assignments reviewed under Ubuntu 22.04.3 LTS
 - Ubuntu provides glfw 3.3
- Submit using Canvas
 - ZIP without creating an extra folder
 - Name projects hw1, hw2, ... (lower case)
 - Include all source code, makefile and data files
 - Set window title to Homework X: Your Name
- Include number of hours spent on assignment

Check my feedback and resubmit if requested

Project

- Should be a program with a significant graphics component
 - Something useful in your research/work
 - Graphical front end to simulation
 - Graphical portion of a game
 - Expect more from graduate students
- Deadlines
 - Proposal: Thursday March 20
 - Progress: Thursday April 17
 - Final: Monday April 28

A few hints

- My machine runs Linux x86_64
 - gcc/g++ with nVidia & GLX
 - -Wall is a **really** good idea
 - case sensitive file names
 - int=32bit, long=64bit
 - little-endian
 - fairly good performance
- How to make my life easier
 - Try it on another machine
 - Stick to C/C++ unless you have a good reason
- Maintain thy backups...

What to Present

- Should be (mostly) the assigned topic
 - Rabbit holes can be very interesting
 - Keep it within reach of the class
- Show what you did for the assignment
 - Cover principles or theory I omitted
 - Show and describe code of interest
 - Demonstrate "gotchas" you encountered
 - Impress your friends
- Keep it interesting