

CSCI 4239/5239
Advanced

Computer
 Graphics

Spring 2025

Instructor
● Willem A (Vlakkies) Schreüder
● Email: vlakkies@colorado.edu

– Begin subject with 4239 or 5239
– Resend email not answered promptly

● Office Hours:
– Monday 3-4pm by Zoom
– Thursday 2-3pm by Zoom or in ECOT 732
– Other times by appointment

● Weekday Contact Hours: 6:30am - 9:00pm

Course Objectives
● Explore advanced topics in

 Computer Graphics
– Pipeline Programming (Shaders)
– Embedded System (OpenGL ES)
– GPU Programming (CUDA&OpenCL)
– Ray Tracing
– Special topics

● Assignments: Practical OpenGL
– Building useful applications
– Use GLFW to build programs

Course Organization
● Tuesday: Introduction of next topic

– Lecture
– Example programs

● Thursday:
– Discussion of previous homework
– Presentations

Ungrading
● You self-assign the final grade

– I may adjust it if I disagree
● Before each Thursday class period

– Set SMART goals for the next week
– Evaluate your goals from the pervious week
– Keep a record of these weekly evaluations

that I will review with you as part of the final
project during the last week of class

– This should be a 10 minute activity

S.M.A.R.T. Goals
● Summarize your goals each week

– Specific - what you want to achieve
– Measureable - evaluating success
– Achievable - doable in a week/semester
– Relevant - somewhat on topic
– Timely - plan your week

● You weekly journal should follow this pattern

Assumptions
● You need to be fluent in C/C++

– Examples are in C or C++
– You can do assignments in any language

● I may need help getting it to work on my system
● You need to be comfortable with OpenGL

– CSCI 4229/5229 or equivalent
– You need a working OpenGL environment

Class Attendance
● Attendance is expected

– I don’t typically take attendance
● More of a seminar than a lecture

– Participation is important
● If you are legitimately sick, use Zoom

– Email me well before class
– I will record the lecture if there is a

compelling reason

Assignment Expectations
● The goal is to impress your friends
● Assignments must be submitted on time

unless prior arrangements are made
– Due by 23:59 Wednesday
– Grace period until Thursday at 8:00am

● Assignments must be completed individually
– Stealing ideas are encouraged
– Code reuse with attribution is permitted

● I will review your submissions before class

Code Reuse
● Code from the internet or class may be used

– You take responsibility for any bugs in the code
● That includes bugs in my code

– Make the code your own
● Understand it
● Format it consistently

– Improve upon what you found
● I may ask what improvements you made

– Submitting code without crediting the
source is violation of the CU honor code

● The assignment is a minimum requirement

Code Expectations
● I expect professional standards in coding

– Informative comments
– Consistent formatting

● Expand tabs
– Clean code

● Clean out unused code
● Good code organization
● Appropriate to the problem at hand
● See Expectations on Canvas
● You need to understand every line

Text
● OpenGL Programming Guide (9ed)

– Kessenich, Sellers & Schreiner
– “OpenGL Vermillion Book”
– Implementing Shaders using GLSL
– Don't get an older edition

● Ray Tracing from the Ground Up
– Kevin Suffern
– Theory and practice of ray tracing

● Recommended by not required

Other Texts
● OpenGL SuperBible: Comprehensive Tutorial

and Reference (7ed)
– Sellers, Wright & Haemel
– Good all-round theory and applications

● Graphics Shaders: Theory and Practice (2ed)
– Bailey & Cunningham
– Great shader examples

Other Texts
● OpenGL ES 3.0 Programming Guide

– Ginsburg & Purnomo
– “OpenGL Purple Book”
– Has a chapter specific to the iPhone

● WebGL Programming Guide
– Matsuda & Lea

Other Texts
● Programming Massively Parallel Processors

– Kirk & Hwu
– Explains GPU programming using CUDA
– Shows how to adopt OpenCL

● CUDA by Example
– Sanders and Kandrot
– Great introduction using examples

Other Texts
● Advanced Graphics Programming Using

OpenGL
– Tom McReynolds and David Blythe
– Great reference for miscellaneous advanced

topics
● Physically Based Rendering

– Pharr, Jakob and Humpfreys
– Only for PBRT homework
– 3rd edition for PBRTv3

OpenGL Resources
● www.google.com

– Need I say more?
● www.opengl.org

– Code and tutorials
● nehe.gamedev.net

www.lighthouse3d.com
– Excellent tutorials

● www.mesa3d.org
– Code of “internals”

● www.prinmath.com/csci5229
– Example programs from CSCI 4229/5229

Assignment 0
● Due: Today Jan 14 by 23:59
● Check your Canvas notification settings

– Set notifications to immediate
● Submit

– Current picture
– Your study area
– Platform (Hardware, Graphics, OS, ...)
– Why are you taking this class?
– Does office hours work for you?

My information
● Mathematical modeling and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran, Perl & Python
● Outside interests

– Aviation
– Amateur radio

Hardware Requirements
● You need hardware that will run shaders well

– Integrated graphics may be marginal
– Graphics cards from the last 5 years should be OK
– GPU computing needs high end hardware
– A VM is probably not going to cut it

● Try on different hardware
– AMD/nVidia/Intel sometimes behave differently
– I have nVidia hardware

Examples use glfw
● Why drop GLUT?

– Apple support for GLUT is waning
– It is easy to use, but limited capabilities

● Why glfw
– It is cross platform: Linux/WinX/OSX/iOS/...
– Very light weight wrapper to OpenGL
– Does not do sound, load images, etc
– Actively being developed (Vulcan is coming...)

● Can I use SDL or another wrapper?
– As long as it is cross platform

Installing glfw
● http://www.glfw.org/
● Ubuntu:

– apt-get install glfw3-dev
● OSX

– Install Xcode with command line tools
– Install homebrew
– Install toolchain, glfw and glew

● Windows
– Install MSYS2/MinGW
– Install toolchain, glfw and glew with pacman

OpenGL Extension Wrangler
(GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or
OpenGL version at run time
– Crashes if unsupported features are used

● Use only if you have to (Windows mostly)
– Set -dUSEGLEW to selectively invoke it
– Do NOT require GLEW (I don't need it)
– See Canvas for installation instructions

CSCIx239 Library
● Includes GLFW and GLEW headers
● Many convenience functions

– InitWindow starts GLFW and GLEW
– Projection, Print, Fatal, ErrCheck, ...
– Load textures and OBJs
– Simple objects (Cube, Sphere, ...)
– Compile Shaders
– Matrix operations
– Performance (FPS, elapsed)

● Make sure you know what it does

OpenGL Verions
● I will use different OpenGL versions depending

on what is convenient for the problem at hand
– OpenGL 2.x

● Feature rich
● Flat learning curve
● Convenient in many applications

– OpenGL 3.x or OpenGL 4.x
● Somewhat different syntax
● Needed for advanced shaders

● OpenGL Core & Compatibility Profiles
● You can use whatever version you want

Assignment 1
● Due: Tomorrow Wednesday January 15
● NDC to RGB shader

– For every point on the objects, the color
should be determined by its position in
normalized device coordinates

● The goal is to make this as short and
elegant as possible
– Shader Golf
– Figure this out for yourself
– Make every operation count

● Test your toolchain

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under Ubuntu 22.04.3 LTS
– Ubuntu provides glfw 3.3

● Submit using Canvas
– ZIP without creating an extra folder
– Name projects hw1, hw2, … (lower case)
– Include all source code, makefile and data files
– Set window title to Homework X: Your Name

● Include number of hours spent on assignment
● Check my feedback and resubmit if

requested

Project
● Should be a program with a significant

graphics component
– Something useful in your research/work
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Thursday March 20
– Progress: Thursday April 17
– Final: Monday April 28

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it on another machine
– Stick to C/C++ unless you have a good reason

● Maintain thy backups...

What to Present
● Should be (mostly) the assigned topic

– Rabbit holes can be very interesting
– Keep it within reach of the class

● Show what you did for the assignment
– Cover principles or theory I omitted
– Show and describe code of interest
– Demonstrate “gotchas” you encountered
– Impress your friends

● Keep it interesting

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

