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Instructor
● Willem A (Vlakkies) Schreüder
● Email: vlakkies@colorado.edu

– Begin subject with 4239 or 5239
– Resend email not answered promptly

● Office Hours:
– Monday 3-4pm by Zoom
– Thursday 2-3pm by Zoom or in ECOT 732
– Other times by appointment

● Weekday Contact Hours: 6:30am - 9:00pm



  

Course Objectives
● Explore advanced topics in

   Computer Graphics
– Pipeline Programming (Shaders)
– Embedded System (OpenGL ES)
– GPU Programming (CUDA&OpenCL)
– Ray Tracing
– Special topics

● Assignments:  Practical OpenGL
– Building useful applications
– Use GLFW to build programs



  

Course Organization
● Tuesday:  Introduction of next topic

– Lecture
– Example programs

● Thursday:
– Discussion of previous homework
– Presentations



  

Ungrading
● You self-assign the final grade

– I may adjust it if I disagree
● Before each Thursday class period

– Set SMART goals for the next week
– Evaluate your goals from the pervious week
– Keep a record of these weekly evaluations 

that I will review with you as part of the final 
project during the last week of class

– This should be a 10 minute activity



  

S.M.A.R.T. Goals
● Summarize your goals each week

– Specific - what you want to achieve
– Measureable - evaluating success
– Achievable - doable in a week/semester
– Relevant - somewhat on topic
– Timely - plan your week

● You weekly journal should follow this pattern



  

Assumptions
● You need to be fluent in C/C++

– Examples are in C or C++
– You can do assignments in any language

● I may need help getting it to work on my system
● You need to be comfortable with OpenGL

– CSCI 4229/5229 or equivalent 
– You need a working OpenGL environment



  

Class Attendance
● Attendance is expected

– I don’t typically take attendance
● More of a seminar than a lecture

– Participation is important
● If you are legitimately sick, use Zoom

– Email me well before class
– I will record the lecture if there is a 

compelling reason



  

Assignment Expectations
● The goal is to impress your friends
● Assignments must be submitted on time 

unless prior arrangements are made
– Due by 23:59 Wednesday
– Grace period until Thursday at 8:00am

● Assignments must be completed individually
– Stealing ideas are encouraged
– Code reuse with attribution is permitted

● I will review your submissions before class



  

Code Reuse
● Code from the internet or class may be used

– You take responsibility for any bugs in the code
● That includes bugs in my code

– Make the code your own
● Understand it
● Format it consistently

– Improve upon what you found
● I may ask what improvements you made

– Submitting code without crediting the 
source is  violation of the CU honor code

● The assignment is a minimum requirement



  

Code Expectations
● I expect professional standards in coding

– Informative comments
– Consistent formatting

● Expand tabs
– Clean code

● Clean out unused code
● Good code organization
● Appropriate to the problem at hand
● See Expectations on Canvas
● You need to understand every line



  

Text
● OpenGL Programming Guide (9ed)

– Kessenich, Sellers & Schreiner
– “OpenGL Vermillion Book”
– Implementing Shaders using GLSL
– Don't get an older edition

●  Ray Tracing from the Ground Up
– Kevin Suffern
– Theory and practice of ray tracing

● Recommended by not required



  

Other Texts
● OpenGL SuperBible: Comprehensive Tutorial 

and Reference (7ed)
– Sellers, Wright & Haemel
– Good all-round theory and applications

● Graphics Shaders: Theory and Practice (2ed)
– Bailey & Cunningham
– Great shader examples



  

Other Texts
● OpenGL ES 3.0 Programming Guide

– Ginsburg & Purnomo
– “OpenGL Purple Book”
– Has a chapter specific to the iPhone

● WebGL Programming Guide
– Matsuda & Lea



  

Other Texts
● Programming Massively Parallel Processors

– Kirk & Hwu
– Explains GPU programming using CUDA
– Shows how to adopt OpenCL

● CUDA by Example
– Sanders and Kandrot
– Great introduction using examples



  

Other Texts
●  Advanced Graphics Programming Using 

OpenGL
– Tom McReynolds and David Blythe
– Great reference for miscellaneous advanced 

topics
● Physically Based Rendering

– Pharr, Jakob and Humpfreys
– Only for PBRT homework
– 3rd edition for PBRTv3



  

OpenGL Resources
● www.google.com

– Need I say more?
● www.opengl.org

– Code and tutorials
● nehe.gamedev.net

www.lighthouse3d.com
– Excellent tutorials

● www.mesa3d.org
– Code of “internals”

● www.prinmath.com/csci5229
– Example programs from CSCI 4229/5229



  

Assignment 0
● Due: Today Jan 14 by 23:59
● Check your Canvas notification settings

– Set notifications to immediate
● Submit

– Current picture
– Your study area
– Platform (Hardware, Graphics, OS, ...)
– Why are you taking this class?
– Does office hours work for you?



  

My information
● Mathematical modeling and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran, Perl & Python
● Outside interests

– Aviation
– Amateur radio



  

Hardware Requirements
● You need hardware that will run shaders well

– Integrated graphics may be marginal
– Graphics cards from the last 5 years should be OK
– GPU computing needs high end hardware
– A VM is probably not going to cut it

● Try on different hardware
– AMD/nVidia/Intel sometimes behave differently
– I have nVidia hardware



  

Examples use glfw
● Why drop GLUT?

– Apple support for GLUT is waning
– It is easy to use, but limited capabilities

● Why glfw
– It is cross platform: Linux/WinX/OSX/iOS/...
– Very light weight wrapper to OpenGL
– Does not do sound, load images, etc
– Actively being developed (Vulcan is coming...)

● Can I use SDL or another wrapper?
– As long as it is cross platform



  

Installing glfw
● http://www.glfw.org/
● Ubuntu:

– apt-get install glfw3-dev
● OSX

– Install Xcode with command line tools
– Install homebrew
– Install toolchain, glfw and glew

● Windows
– Install MSYS2/MinGW
– Install toolchain, glfw and glew with pacman



  

OpenGL Extension Wrangler 
(GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or 
OpenGL version at run time
– Crashes if unsupported features are used

● Use only if you have to (Windows mostly)
– Set -dUSEGLEW to selectively invoke it
– Do NOT require GLEW (I don't need it)
– See Canvas for installation instructions



  

CSCIx239 Library
● Includes GLFW and GLEW headers
● Many convenience functions

– InitWindow starts GLFW and GLEW
– Projection, Print, Fatal, ErrCheck, ...
– Load textures and OBJs
– Simple objects (Cube, Sphere, ...)
– Compile Shaders
– Matrix operations
– Performance (FPS, elapsed)

● Make sure you know what it does



  

OpenGL Verions
● I will use different OpenGL versions depending 

on what is convenient for the problem at hand
– OpenGL 2.x

● Feature rich
● Flat learning curve
● Convenient in many applications

– OpenGL 3.x or OpenGL 4.x
● Somewhat different syntax
● Needed for advanced shaders

● OpenGL Core & Compatibility Profiles
● You can use whatever version you want



  

Assignment 1
● Due: Tomorrow Wednesday January 15
● NDC to RGB shader

– For every point on the objects, the color 
should be determined by its position in 
normalized device coordinates

● The goal is to make this as short and 
elegant as possible
– Shader Golf
– Figure this out for yourself
– Make every operation count

● Test your toolchain



  

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under Ubuntu 22.04.3 LTS
– Ubuntu provides glfw 3.3

● Submit using Canvas
– ZIP without creating an extra folder
– Name projects hw1, hw2, … (lower case)
– Include all source code, makefile and data files
– Set window title to Homework X: Your Name

● Include number of hours spent on assignment
● Check my feedback and resubmit if 

requested



  

Project
● Should be a program with a significant 

graphics component
– Something useful in your research/work
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Thursday March 20
– Progress: Thursday April 17
– Final: Monday April 28



  

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it on another machine
– Stick to C/C++ unless you have a good reason

● Maintain thy backups...



  

What to Present
● Should be (mostly) the assigned topic

– Rabbit holes can be very interesting
– Keep it within reach of the class

● Show what you did for the assignment
– Cover principles or theory I omitted
– Show and describe code of interest
– Demonstrate “gotchas” you encountered
– Impress your friends

● Keep it interesting
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