
  

OpenGL ES
CSCI 4239/5239

Advanced Computer Graphics
Spring 2025



  

OpenGL ES
● OpenGL for Embedded Systems

– Phones
– Game consoles
– Appliances
– Avionics
– Subsystems (e.g. browsers)
– …

● Cross-platform, open, standard



  

What is it?
● OpenGL adapted for Embedded Systems

– Less capable hardware
● Limited memory
● Limited processing power
● Lower clock frequencies

– Lower power consumption
● Less heat dissipation

● Same familiar API
– Subset of full OpenGL API
– Powerful 3D graphics in your pocket



  

OpenGL ES Advantages
● Standard and Royalty Free
● Small footprint
● Low power consumption
● Seamless hardware acceleration
● Extensible and evolving
● Easy to use
● Well documented 



  

Current Applications
● Mobile devices

– iPhone/iPod/iPad
– Android

● WebGL
– Chrome, Firefox, Safari, Opera, ...

● Embeded systems
– 3D displays



  

OpenGL ES 1.1
● Feature upgrade from OpenGL ES 1.0
● Defined relative to OpenGL 1.5
● Fixed pipeline (no shaders)
● Removes some functionality

– No glBegin() … glEnd()
● Replaced with glDrawArrays() & glDrawElements()

– No GL_QUAD or GL_POLYGON
– No display lists

● Still provides lighting, textures, etc.



  

OpenGL ES 2.0 and later
● Not backwards compatible with ES 1.1
● Defined relative to OpenGL 2.0
● Shaders only (no fixed pipeline)

– No lighting except in shaders
– Textures only in shaders

● Removes transformation functions
– No glRotate() glScale() glTranslate()

● OpenGL ES 3.0 adds feature upgrades 



  



  

OpenGL SC
● OpenGL for Safety Critical applications

– Avionics
– Automotive
– Industrial
– Medical
– Military



  

OpenGL SC Features
● SC 1.0 starts with OpenGL ES 1.0

– Adds back some features
● Begin/End
● Display Lists
● Some raster ops
● Anti-aliasing

– Removes some features
● Fog

● SC 2.0 starts with OpenGL ES 2.0



  

WebGL
● OpenGL ES 2.0 for the web
● Extends Javascript
● Operates on HTML5 canvas element
● Prohibits client side arrays

– All vertex, normal, color, … must be stored 
in Vertex Buffer Object on video card

● Becoming more mainstream
– Still a work in progress



  

WebGL Platforms
● Supported by most browsers

– Chromium
– Firefox
– Safari
– Opera
– Explorer/Edge/...

● Update to recent version
– Local file access workarounds



  

Apple iOS Devices
● Supports OpenGL ES 1.1 and 2.0
● User interface is Objective C

– Links to C and C++ code
● Develop with Xcode on Mac only
● Emulator for all devices

– Slower than native devices
– Almost perfect emulation

● Apple is replacing OpenGL with Metal



  

Getting iOS Tools
● Download Xcode from Apple

– many GB download
● Provides compiler, frameworks, etc
● Create project in Xcode
● Select target iPhone/iPad
● Emulator launched on run
● Get command line tools also



  

Android Devices
● Supports OpenGL ES 1.1 or 2.0

– Higher end devices support 1.1 AND 2.0
– Low end devices may only do 1.1

● User interface is Java
– Link to C/C++ code with JNI

● Develop with NDK
● Emulator for phones and tablets

– Slower than native devices
– Hardware acceleration much improved



  

Android Tools
● Download Android Studio

– https://developer.android.com/studio/
– About 750MB ZIP file

● Unzip and find studio.sh or studio.exe
● Use Configure to download SDK, NDK
● Add Android tools to PATH

– …./SDK/tools
– …./SDK/platform-tools
– …./SDK/ndk-bundle

● Create AVDs

https://developer.android.com/studio/


  

Initial SDK Configuration



  

Select and install SDK Tools



  

Import Code Example



  

Teapots NDK/OpenGL ES 2.0



  

Select Target, Build and Run



  

Create Virtual Device
using Wizard



  

teapot, textured-teapot
and more-teapots



  

Portable OpenGL ES Code
● Write the bulk of the code in C++

– OpenGL ES 1.1 will run on all devices
– OpenGL ES 2.0 will run on higer end devices

● Write minimal code in interface language
– Objective C – link to C/C++
– Java – call C/C++ using JNI

● Qt 5 for iOS/Qt 5 for Android
– Later builds are better



  

Assignment 5
● Create a scene that can be viewed in 3D 

using WebGL or IOS or Android
– Must support lighting and textures
– Objects must be created in code

● I want you to get some experience using vertex 
buffer objects

● WebGL may use mat4.js or CanvasMatrix library, 
but NOT Three.js or similar high level libraries

● Explore features like buttons


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

