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OpenGL ES
● OpenGL for Embedded Systems

– Phones
– Game consoles
– Appliances
– Avionics
– Subsystems (e.g. browsers)
– …

● Cross-platform, open, standard



  

What is it?
● OpenGL adapted for Embedded Systems

– Less capable hardware
● Limited memory
● Limited processing power
● Lower clock frequencies

– Lower power consumption
● Less heat dissipation

● Same familiar API
– Subset of full OpenGL API
– Powerful 3D graphics in your pocket



  

OpenGL ES Advantages
● Standard and Royalty Free
● Small footprint
● Low power consumption
● Seamless hardware acceleration
● Extensible and evolving
● Easy to use
● Well documented 



  

Current Applications
● Mobile devices

– iPhone/iPod/iPad
– Android

● WebGL
– Chrome, Firefox, Safari, Opera, ...

● Embeded systems
– 3D displays



  

OpenGL ES 1.1
● Feature upgrade from OpenGL ES 1.0
● Defined relative to OpenGL 1.5
● Fixed pipeline (no shaders)
● Removes some functionality

– No glBegin() … glEnd()
● Replaced with glDrawArrays() & glDrawElements()

– No GL_QUAD or GL_POLYGON
– No display lists

● Still provides lighting, textures, etc.



  

OpenGL ES 2.0 and later
● Not backwards compatible with ES 1.1
● Defined relative to OpenGL 2.0
● Shaders only (no fixed pipeline)

– No lighting except in shaders
– Textures only in shaders

● Removes transformation functions
– No glRotate() glScale() glTranslate()

● OpenGL ES 3.0 adds feature upgrades 



  



  

OpenGL SC
● OpenGL for Safety Critical applications

– Avionics
– Automotive
– Industrial
– Medical
– Military



  

OpenGL SC Features
● SC 1.0 starts with OpenGL ES 1.0

– Adds back some features
● Begin/End
● Display Lists
● Some raster ops
● Anti-aliasing

– Removes some features
● Fog

● SC 2.0 starts with OpenGL ES 2.0



  

WebGL
● OpenGL ES 2.0 for the web
● Extends Javascript
● Operates on HTML5 canvas element
● Prohibits client side arrays

– All vertex, normal, color, … must be stored 
in Vertex Buffer Object on video card

● Becoming more mainstream
– Still a work in progress



  

WebGL Platforms
● Supported by most browsers

– Chromium
– Firefox
– Safari
– Opera
– Explorer/Edge/...

● Update to recent version
– Local file access workarounds



  

Apple iOS Devices
● Supports OpenGL ES 1.1 and 2.0
● User interface is Objective C

– Links to C and C++ code
● Develop with Xcode on Mac only
● Emulator for all devices

– Slower than native devices
– Almost perfect emulation

● Apple is replacing OpenGL with Metal



  

Getting iOS Tools
● Download Xcode from Apple

– many GB download
● Provides compiler, frameworks, etc
● Create project in Xcode
● Select target iPhone/iPad
● Emulator launched on run
● Get command line tools also



  

Android Devices
● Supports OpenGL ES 1.1 or 2.0

– Higher end devices support 1.1 AND 2.0
– Low end devices may only do 1.1

● User interface is Java
– Link to C/C++ code with JNI

● Develop with NDK
● Emulator for phones and tablets

– Slower than native devices
– Hardware acceleration much improved



  

Android Tools
● Download Android Studio

– https://developer.android.com/studio/
– About 750MB ZIP file

● Unzip and find studio.sh or studio.exe
● Use Configure to download SDK, NDK
● Add Android tools to PATH

– …./SDK/tools
– …./SDK/platform-tools
– …./SDK/ndk-bundle

● Create AVDs

https://developer.android.com/studio/


  

Initial SDK Configuration



  

Select and install SDK Tools



  

Import Code Example



  

Teapots NDK/OpenGL ES 2.0



  

Select Target, Build and Run



  

Create Virtual Device
using Wizard



  

teapot, textured-teapot
and more-teapots



  

Portable OpenGL ES Code
● Write the bulk of the code in C++

– OpenGL ES 1.1 will run on all devices
– OpenGL ES 2.0 will run on higer end devices

● Write minimal code in interface language
– Objective C – link to C/C++
– Java – call C/C++ using JNI

● Qt 5 for iOS/Qt 5 for Android
– Later builds are better



  

Assignment 5
● Create a scene that can be viewed in 3D 

using WebGL or IOS or Android
– Must support lighting and textures
– Objects must be created in code

● I want you to get some experience using vertex 
buffer objects

● WebGL may use mat4.js or CanvasMatrix library, 
but NOT Three.js or similar high level libraries

● Explore features like buttons
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