

Textures for
Data Storage:
Noise & Maps

CSCI 4239/5239
Advanced Computer Graphics

Spring 2025

Storing Data in Textures
● A texture can be thought of as a function

– 1D => 1 independent variable
– 2D => 2 independent variables
– 3D => 3 independent variables

● Each texture is actually four functions
– RGBA values are independent
– Shader translates integer values to [0-1]

● Piecewise linear function description
– User sets values at pixels
– OpenGL interpolates between pixels

Applications
● Color translations

– temperature to color
● Function approximation

– sine, cosine
● Deformations/deviations

– bump maps
● Distance

– shadows
● Noise

– parameters
– results

Noise
● What is noise?

– Random signals
– Imperfections
– Snoop Dogg

● Properties
– Random (but not like random numbers)
– Continuous
– Range of frequencies

One Dimensional Noise

Components Summation

Two Dimensional Noise

Components

Summation

Noise in Computer Graphics
● Introduced by Ken Perlin

– First used in Tron
– Academic paper in 1985

● Purpose
– Rendering natural phenomena like clouds
– Rendering materials like wood or concrete
– Adding imperfections to surfaces like bumps
– Adding imperfections to motion like jitters

● Noise and random numbers are related
but quite different

Properties of noise
● Appear random
● Continuous
● Reproducable
● Well defined domain and range
● No obvious regularity (with some

exceptions)
● Isotropic (with some exceptions)

Types of Noise
● Value noise

– Values interpolated from points
● Gradient noise

– Values generated from random gradients
– Perlin (Classical) noise
– Simplex noise

● Faster and simpler than Perlin
– Wavelet noise

● More realistic

Noise in GLSL
● Part of the language

– noiseX(vecY)
– rarely implemented

● no compiler error, just returns 0
● D-I-Y

– Noise texture (ex13)
● Generates Perlin noise texture and sample in shader

– Noise shader (ex14)
● Store coefficients in texture
● Compute Perlin and simplex noise in fragment shader

Results

Property Maps
● Used to specify

properties by pixel
– Height map
– Normal map
– Bump map
– Parallax map
– Displacement map

● Modifies properties at
the pixel level

Tangent Space
● Orthogonal space perpendicular to surface

– Normal
– Tangent orients direction
– Bitangent = Normal x Tangent

● Computing the tangent
– By observation
– Precomputed from texture coordinates
– Compute in geometry shader

● Normal map sets multipliers for base vectors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

