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Solutions to Parallel Processing
• Message Passing (distributed)

– MPI (library)
• Threads (shared memory)

– pthreads (library)
– OpenMP (compiler)

• GPU Programming (shared bus)
– CUDA (compiler)
– OpenCL (library)
– OpenACC (compiler)
– GLSL Compute Shader
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Using the GPU for Computation
• The GPU is very good at floating point.  How 

can we use that to do computations?
– Write a shader and be the result be a 

pseudo-color
– Use CUDA with nVidia hardware
– Use OpenCL with general hardware
– Use an OpenGL 4.3 Compute Shader

• Issues
– Getting instructions and data to the GPU
– Precision of computations
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Text/Notes
• Programming massively Parallel Processors

– Kirk and Hwu
– Good introduction to CUDA and OpenCL
– Examples, tips and Tricks
– Most slides taken from their lecture notes

• CUDA by Example
– Sanders and Kandrot
– CUDA only
– Examples



  

History of Coprocessors
● Floating point option

– 8087, 80287, Weitek
● Floating Point Systems Array Processors

– Attaches to VAX
● DSP chips
● Analog and special purpose CPUs
● Graphics Processors
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Why Massively Parallel Processor
• A quiet revolution and potential build-up

– Calculation: 367 GFLOPS vs. 32 GFLOPS
– Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
– Until 2006, programmed through graphics API

– GPU in every PC and workstation – massive volume and potential 
impact
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What is (Historical) GPGPU ?
● General Purpose computation using GPU and graphics 

API in applications other than 3D graphics
– GPU accelerates critical path of application

● Data parallel algorithms leverage GPU attributes
– Large data arrays, streaming throughput
– Fine-grain SIMD parallelism
– Low-latency floating point (FP) computation

● Applications – see GPGPU.org
– Game effects (FX) physics, image processing
– Physical modeling, computational engineering, matrix algebra, 

convolution, correlation, sorting
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Previous GPGPU Constraints
● Dealing with graphics API

– Working with the corner cases of 
the graphics API

● Addressing modes
– Limited texture size/dimension

● Shader capabilities
– Limited outputs

● Instruction sets
– Lack of Integer & bit ops

● Communication limited
– Between pixels
– Scatter  a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

        FB       Memory



  

Compute Shaders
● Shader buffers for memory access
● Shader has access to entire array for both 

read and write
● Compute shader compiled using OpenGL
● Requires OpenGL 4.3 
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CUDA
● “Compute Unified Device Architecture”
● General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor
● Targeted software stack

– Compute oriented drivers, language, and tools
● Driver for loading computation programs into GPU

– Standalone Driver - Optimized for computation 
– Interface designed for compute – graphics-free API
– Data sharing with OpenGL buffer objects 
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

http://www.opengl.org/
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An Example of Physical Reality 
Behind CUDA CPU

(host)

GPU w/ 
local DRAM

(device)
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Parallel Computing on a GPU 
• 8-series GPUs deliver 25 to 200+ GFLOPS

on compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year
• Programming model scales transparently

• Programmable in C with CUDA tools
• Multithreaded SPMD model uses 

application 
data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870
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Overview
• CUDA programming model – basic 

concepts and data types

• CUDA application programming interface 
- basic

• Simple examples to illustrate basic 
concepts and functionalities

• Performance features will be covered 
later
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CUDA – C with no shader 
limitations!

• Integrated host+device app C program
– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C 

code
Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);
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CUDA Devices and Threads
• A compute device

– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel
– Is typically a GPU but can also be another type of  parallel 

processing device 
• Data-parallel portions of an application are expressed 

as device kernels which run on many threads
• Differences between GPU and CPU threads 

– GPU threads are extremely lightweight
• Very little creation overhead

– GPU needs 1000s of threads for full efficiency
• Multi-core CPU needs only a few
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CUDA mode – A Device Example
• Processors execute computing threads
• New operating mode/HW interface for 

computing

Load/store

Global Memory
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Parallel Data
Cache

Parallel Data
Cache
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Extended C
● Declspecs

– global, device, 
shared, local, 
constant

● Keywords
– threadIdx, blockIdx

● Intrinsics
– __syncthreads

● Runtime API
– Memory, symbol, 

execution 
management

● Function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  {

  __shared__ float region[M];
  ... 

  region[threadIdx] = image[i]; 

  __syncthreads()  
  ... 

  image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);
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gcc / cl

G80 SASS
foo.sass

OCG

Extended C

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU  Assembly
foo.s

CPU Host Code 
foo.cpp

Integrated source
(foo.cu)

Mark Murphy, “
NVIDIA’s Experience with Open64,”
www.capsl.udel.edu/conferences/
open64/2008/Papers/101.doc 

http://www.capsl.udel.edu/conferences/open64/2008/Papers/101.doc
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Arrays of Parallel Threads

• A CUDA kernel is executed by an array of threads
● All threads run the same code (SPMD)
● Each thread has an ID that it uses to compute memory 

addresses and make control decisions

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID
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…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable 
Cooperation

• Divide monolithic thread array into 
multiple blocks
– Threads within a block cooperate via shared 

memory, atomic operations and barrier 
synchronization

– Threads in different blocks cannot cooperate
76543210 76543210 76543210
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Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs
• Each thread uses IDs to 

decide what data to work 
on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D 

• Simplifies memory
addressing when 
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …
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CUDA Memory Model Overview

• Global memory
– Main means of 

communicating R/W 
Data between host and 
device

– Contents visible to all 
threads

– Long latency access
• We will focus on global 

memory for now
– Constant and texture 

memory will come later

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host
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CUDA API Highlights:
Easy and Lightweight

• The API is an extension to the ANSI C 
programming language
          Low learning curve

• The hardware is designed to enable 
lightweight runtime and driver
          High performance
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CUDA Device Memory 
Allocation

• cudaMalloc()
– Allocates object in the 

device Global MemoryGlobal Memory
– Requires two parameters

● Address of a pointer to 
the allocated object

● Size of of allocated object
• cudaFree()

– Frees object from device 
Global Memory

● Pointer to freed object

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host
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CUDA Device Memory Allocation (cont.)
• Code example: 

– Allocate a  64 * 64 single precision float array
– Attach the allocated storage to Md
– “d” is often used to indicate a device data 

structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);
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CUDA Host-Device Data 
Transfer

• cudaMemcpy()
– memory data transfer
– Requires four 

parameters
● Pointer to destination 
● Pointer to source
● Number of bytes copied
● Type of transfer 

– Host to Host
– Host to Device
– Device to Host
– Device to Device

• Asynchronous transfer

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host
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CUDA Host-Device Data Transfer
(cont.)

• Code example: 
– Transfer a  64 * 64 single precision float 

array
– M is in host memory and Md is in device 

memory
– cudaMemcpyHostToDevice and 

cudaMemcpyDeviceToHost are symbolic 
constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);
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CUDA Function Declarations

hosthost__host__   float HostFunc()

hostdevice__global__ void  KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable 
from the:

Executed 
on the:

•  __global__ defines a kernel function
– Must return void

•  __device__ and __host__ can be used 
together
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CUDA Function Declarations (cont.)

•   __device__ functions cannot have their 
address taken

• For functions executed on the device:
– No recursion
– No static variable declarations inside the 

function
– No variable number of arguments



  35

Calling a Kernel Function – Thread 
Creation

• A kernel function must be called with an 
execution configuration:

__global__ void KernelFunc(...);
dim3   DimGrid(100, 50);    // 5000 thread blocks 
dim3   DimBlock(4, 8, 8);   // 256 threads per block 
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

• Any call to a kernel function is 
asynchronous from CUDA 1.0 on, explicit 
synch needed for blocking
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A Simple Running Example
Matrix Multiplication

• A simple matrix multiplication example 
that illustrates the basic features of 
memory and thread management in 
CUDA programs
– Leave shared memory usage until later
– Local, register usage
– Thread ID usage
– Memory data transfer API between host and 

device
– Assume square matrix for simplicity
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Programming Model: Square 
Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH
• Without tiling:

– One thread calculates one element 
of P

– M and N are loaded WIDTH times 
from global memory

M

N

P

W
ID

TH
W

ID
TH

WIDTH WIDTH
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M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
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Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

TH
W

ID
TH

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{   
    for (int i = 0; i < Width; ++i)
        for (int j = 0; j < Width; ++j) {
            double sum = 0;
            for (int k = 0; k < Width; ++k) {
                double a = M[i * width + k];
                double b = N[k * width + j];
                sum += a * b;
            }
            P[i * Width + j] = sum;
        }
} i

k

k

j
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Threads and Blocks
• One Block of threads compute 

matrix Pd
– Each thread computes one 

element of Pd
• Each thread

– Loads a row of matrix Md
– Loads a column of matrix Nd
– Perform one multiply and 

addition for each pair of Md 
and Nd elements

– Compute to off-chip memory 
access ratio close to 1:1 (not 
very high)

• Size of matrix limited by the 
number of threads allowed in 
a thread block

 Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Threa
d

(2, 2)

   WIDTH

Md Pd

Nd
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Kernel Function Code
// Matrix multiplication kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    
    // Index of thread
    unsigned int j = blockIdx.x*blockDim.x+threadIdx.x;
    unsigned int i = blockIdx.y*blockDim.y+threadIdx.y;

    // Calculate element value
    float sum = 0;
    for (int k=0;k<n;k++)
       sum += A[i*n+k] * B[k*n+j];

    // Store element value
    C[i*n+j] = sum;
 }
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void MatrixMulOnDevice(float* M, float* N, float* P, int Bw, int Bn)
{
   int Width = Wb*Bn;
   int size = Width * Width * sizeof(float); 
    float* Md, Nd, Pd;

   // Allocate and Load M, N to device memory 
   cudaMalloc(&Md, size);
   cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
   cudaMalloc(&Nd, size);
   cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
   // Allocate P on the device
   cudaMalloc(&Pd, size);

Step 1: Copy Input Data
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    // Setup the execution configuration
    dim3 dimGrid(Bw, Bw);
   dim3 dimBlock(Bn, Bn);

    // Launch the device computation threads!
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Bw*Bn);

Step 2: Kernel Invocation 
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Step 3: Copy Output Data

      // Read P from the device
      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

       // Free device matrices
      cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
  }
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Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

 G80    …     GPU 

Target code

PTX CodeVirtual

Physical

CPU Code

• Parallel Thread 
eXecution (PTX)

● Virtual Machine 
and ISA

● Programming 
model

● Execution 
resources and 
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32           $f1, $f5, $f3, $f1;
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Compilation

• Any source file containing CUDA language 
extensions must be compiled with NVCC

• NVCC is a compiler driver
● Works by invoking all the necessary tools and compilers 

like cudacc, g++, cl, ...
• NVCC outputs:

● C code (host CPU Code)
● Must then be compiled with the rest of the application using another tool

● PTX
● Object code directly
● Or, PTX source, interpreted at runtime
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Linking
• Any executable with CUDA code requires 

two dynamic libraries:
– The CUDA runtime library (cudart)
– The CUDA core library (cuda)
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Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation 
mode (nvcc -deviceemu) runs completely on 
the host using the CUDA runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• Running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and vice-versa
– Detect deadlock situations caused by improper usage of 

__syncthreads
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Device Emulation Mode Pitfalls
• Emulated device threads execute 

sequentially, so simultaneous accesses of 
the same memory location by multiple 
threads could produce different results.

• Dereferencing device pointers on the host 
or host pointers on the device can 
produce correct results in device 
emulation mode, but will generate an 
error in device execution mode
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Floating Point
• Results of floating-point computations will 

slightly differ because of:
– Different compiler outputs, instruction sets
– Use of extended precision for intermediate 

results
● There are various options to force strict single 

precision on the host
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