

GPU
Computation

CSCI 4239/5239
Advanced Computer Graphics

Spring 2025

 2

Solutions to Parallel Processing
• Message Passing (distributed)

– MPI (library)
• Threads (shared memory)

– pthreads (library)
– OpenMP (compiler)

• GPU Programming (shared bus)
– CUDA (compiler)
– OpenCL (library)
– OpenACC (compiler)
– GLSL Compute Shader

 3

Using the GPU for Computation
• The GPU is very good at floating point. How

can we use that to do computations?
– Write a shader and be the result be a

pseudo-color
– Use CUDA with nVidia hardware
– Use OpenCL with general hardware
– Use an OpenGL 4.3 Compute Shader

• Issues
– Getting instructions and data to the GPU
– Precision of computations

 4

Text/Notes
• Programming massively Parallel Processors

– Kirk and Hwu
– Good introduction to CUDA and OpenCL
– Examples, tips and Tricks
– Most slides taken from their lecture notes

• CUDA by Example
– Sanders and Kandrot
– CUDA only
– Examples

History of Coprocessors
● Floating point option

– 8087, 80287, Weitek
● Floating Point Systems Array Processors

– Attaches to VAX
● DSP chips
● Analog and special purpose CPUs
● Graphics Processors

 6

Why Massively Parallel Processor
• A quiet revolution and potential build-up

– Calculation: 367 GFLOPS vs. 32 GFLOPS
– Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
– Until 2006, programmed through graphics API

– GPU in every PC and workstation – massive volume and potential
impact

 7

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

CPUs and GPUs have
fundamentally different design

philosophies

 8

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

Architecture of a CUDA-capable
GPU

 9

Host

Vertex Control
Vertex
Cache

VS/T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

CPU

GPUHost Interface

A Fixed Function
GPU Pipeline

 10

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Data Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Unified Graphics Pipeline

 11

What is (Historical) GPGPU ?
● General Purpose computation using GPU and graphics

API in applications other than 3D graphics
– GPU accelerates critical path of application

● Data parallel algorithms leverage GPU attributes
– Large data arrays, streaming throughput
– Fine-grain SIMD parallelism
– Low-latency floating point (FP) computation

● Applications – see GPGPU.org
– Game effects (FX) physics, image processing
– Physical modeling, computational engineering, matrix algebra,

convolution, correlation, sorting

 12

Previous GPGPU Constraints
● Dealing with graphics API

– Working with the corner cases of
the graphics API

● Addressing modes
– Limited texture size/dimension

● Shader capabilities
– Limited outputs

● Instruction sets
– Lack of Integer & bit ops

● Communication limited
– Between pixels
– Scatter a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

 FB Memory

Compute Shaders
● Shader buffers for memory access
● Shader has access to entire array for both

read and write
● Compute shader compiled using OpenGL
● Requires OpenGL 4.3

 14

CUDA
● “Compute Unified Device Architecture”
● General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor
● Targeted software stack

– Compute oriented drivers, language, and tools
● Driver for loading computation programs into GPU

– Standalone Driver - Optimized for computation
– Interface designed for compute – graphics-free API
– Data sharing with OpenGL buffer objects
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

http://www.opengl.org/

 15

An Example of Physical Reality
Behind CUDA CPU

(host)

GPU w/
local DRAM

(device)

 16

Parallel Computing on a GPU
• 8-series GPUs deliver 25 to 200+ GFLOPS

on compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year
• Programming model scales transparently

• Programmable in C with CUDA tools
• Multithreaded SPMD model uses

application
data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

 17

Overview
• CUDA programming model – basic

concepts and data types

• CUDA application programming interface
- basic

• Simple examples to illustrate basic
concepts and functionalities

• Performance features will be covered
later

 18

CUDA – C with no shader
limitations!

• Integrated host+device app C program
– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C

code
Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

 19

CUDA Devices and Threads
• A compute device

– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel
– Is typically a GPU but can also be another type of parallel

processing device
• Data-parallel portions of an application are expressed

as device kernels which run on many threads
• Differences between GPU and CPU threads

– GPU threads are extremely lightweight
• Very little creation overhead

– GPU needs 1000s of threads for full efficiency
• Multi-core CPU needs only a few

 20

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

• The future of GPUs is programmable processing
• So – build the architecture around the processor

Graphics Mode

 21

CUDA mode – A Device Example
• Processors execute computing threads
• New operating mode/HW interface for

computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

 22

Extended C
● Declspecs

– global, device,
shared, local,
constant

● Keywords
– threadIdx, blockIdx

● Intrinsics
– __syncthreads

● Runtime API
– Memory, symbol,

execution
management

● Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];
 ...

 region[threadIdx] = image[i];

 __syncthreads()
 ...

 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

 23

gcc / cl

G80 SASS
foo.sass

OCG

Extended C

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly
foo.s

CPU Host Code
foo.cpp

Integrated source
(foo.cu)

Mark Murphy, “
NVIDIA’s Experience with Open64,”
www.capsl.udel.edu/conferences/
open64/2008/Papers/101.doc

http://www.capsl.udel.edu/conferences/open64/2008/Papers/101.doc

 24

Arrays of Parallel Threads

• A CUDA kernel is executed by an array of threads
● All threads run the same code (SPMD)
● Each thread has an ID that it uses to compute memory

addresses and make control decisions

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

 25

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable
Cooperation

• Divide monolithic thread array into
multiple blocks
– Threads within a block cooperate via shared

memory, atomic operations and barrier
synchronization

– Threads in different blocks cannot cooperate
76543210 76543210 76543210

 26

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs
• Each thread uses IDs to

decide what data to work
on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

 27

CUDA Memory Model Overview

• Global memory
– Main means of

communicating R/W
Data between host and
device

– Contents visible to all
threads

– Long latency access
• We will focus on global

memory for now
– Constant and texture

memory will come later

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

 28

CUDA API Highlights:
Easy and Lightweight

• The API is an extension to the ANSI C
programming language
 Low learning curve

• The hardware is designed to enable
lightweight runtime and driver
 High performance

 29

CUDA Device Memory
Allocation

• cudaMalloc()
– Allocates object in the

device Global MemoryGlobal Memory
– Requires two parameters

● Address of a pointer to
the allocated object

● Size of of allocated object
• cudaFree()

– Frees object from device
Global Memory

● Pointer to freed object

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

 30

CUDA Device Memory Allocation (cont.)
• Code example:

– Allocate a 64 * 64 single precision float array
– Attach the allocated storage to Md
– “d” is often used to indicate a device data

structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

 31

CUDA Host-Device Data
Transfer

• cudaMemcpy()
– memory data transfer
– Requires four

parameters
● Pointer to destination
● Pointer to source
● Number of bytes copied
● Type of transfer

– Host to Host
– Host to Device
– Device to Host
– Device to Device

• Asynchronous transfer

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

 32

CUDA Host-Device Data Transfer
(cont.)

• Code example:
– Transfer a 64 * 64 single precision float

array
– M is in host memory and Md is in device

memory
– cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic
constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

 33

CUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

• __global__ defines a kernel function
– Must return void

• __device__ and __host__ can be used
together

 34

CUDA Function Declarations (cont.)

• __device__ functions cannot have their
address taken

• For functions executed on the device:
– No recursion
– No static variable declarations inside the

function
– No variable number of arguments

 35

Calling a Kernel Function – Thread
Creation

• A kernel function must be called with an
execution configuration:

__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

• Any call to a kernel function is
asynchronous from CUDA 1.0 on, explicit
synch needed for blocking

 36

A Simple Running Example
Matrix Multiplication

• A simple matrix multiplication example
that illustrates the basic features of
memory and thread management in
CUDA programs
– Leave shared memory usage until later
– Local, register usage
– Thread ID usage
– Memory data transfer API between host and

device
– Assume square matrix for simplicity

 37

Programming Model: Square
Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH
• Without tiling:

– One thread calculates one element
of P

– M and N are loaded WIDTH times
from global memory

M

N

P

W
ID

TH
W

ID
TH

WIDTH WIDTH

 38

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

 39

Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

TH
W

ID
TH

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
} i

k

k

j

 40

Threads and Blocks
• One Block of threads compute

matrix Pd
– Each thread computes one

element of Pd
• Each thread

– Loads a row of matrix Md
– Loads a column of matrix Nd
– Perform one multiply and

addition for each pair of Md
and Nd elements

– Compute to off-chip memory
access ratio close to 1:1 (not
very high)

• Size of matrix limited by the
number of threads allowed in
a thread block

 Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Threa
d

(2, 2)

 WIDTH

Md Pd

Nd

 41

Kernel Function Code
// Matrix multiplication kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

 // Index of thread
 unsigned int j = blockIdx.x*blockDim.x+threadIdx.x;
 unsigned int i = blockIdx.y*blockDim.y+threadIdx.y;

 // Calculate element value
 float sum = 0;
 for (int k=0;k<n;k++)
 sum += A[i*n+k] * B[k*n+j];

 // Store element value
 C[i*n+j] = sum;
 }

 42

void MatrixMulOnDevice(float* M, float* N, float* P, int Bw, int Bn)
{
 int Width = Wb*Bn;
 int size = Width * Width * sizeof(float);
 float* Md, Nd, Pd;

 // Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
 // Allocate P on the device
 cudaMalloc(&Pd, size);

Step 1: Copy Input Data

 43

 // Setup the execution configuration
 dim3 dimGrid(Bw, Bw);
 dim3 dimBlock(Bn, Bn);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Bw*Bn);

Step 2: Kernel Invocation

 44

Step 3: Copy Output Data

 // Read P from the device
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 // Free device matrices
 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
 }

 45

Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

 G80 … GPU

Target code

PTX CodeVirtual

Physical

CPU Code

• Parallel Thread
eXecution (PTX)

● Virtual Machine
and ISA

● Programming
model

● Execution
resources and
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

 46

Compilation

• Any source file containing CUDA language
extensions must be compiled with NVCC

• NVCC is a compiler driver
● Works by invoking all the necessary tools and compilers

like cudacc, g++, cl, ...
• NVCC outputs:

● C code (host CPU Code)
● Must then be compiled with the rest of the application using another tool

● PTX
● Object code directly
● Or, PTX source, interpreted at runtime

 47

Linking
• Any executable with CUDA code requires

two dynamic libraries:
– The CUDA runtime library (cudart)
– The CUDA core library (cuda)

 48

Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation
mode (nvcc -deviceemu) runs completely on
the host using the CUDA runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• Running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and vice-versa
– Detect deadlock situations caused by improper usage of

__syncthreads

 49

Device Emulation Mode Pitfalls
• Emulated device threads execute

sequentially, so simultaneous accesses of
the same memory location by multiple
threads could produce different results.

• Dereferencing device pointers on the host
or host pointers on the device can
produce correct results in device
emulation mode, but will generate an
error in device execution mode

 50

Floating Point
• Results of floating-point computations will

slightly differ because of:
– Different compiler outputs, instruction sets
– Use of extended precision for intermediate

results
● There are various options to force strict single

precision on the host

	Slide 1
	Slide 2
	Text/Notes
	Slide 4
	Slide 5
	Why Massively Parallel Processor
	CPUs and GPUs have fundamentally different design philosophies
	Architecture of a CUDA-capable GPU
	A Fixed Function GPU Pipeline
	Unified Graphics Pipeline
	What is (Historical) GPGPU ?
	Previous GPGPU Constraints
	Slide 13
	CUDA
	An Example of Physical Reality Behind CUDA
	Parallel Computing on a GPU
	Overview
	CUDA – C with no shader limitations!
	CUDA Devices and Threads
	G80 – Graphics Mode
	G80 CUDA mode – A Device Example
	Extended C
	Slide 23
	Slide 24
	Thread Blocks: Scalable Cooperation
	Block IDs and Thread IDs
	CUDA Memory Model Overview
	CUDA API Highlights: Easy and Lightweight
	CUDA Device Memory Allocation
	CUDA Device Memory Allocation (cont.)
	CUDA Host-Device Data Transfer
	CUDA Host-Device Data Transfer (cont.)
	CUDA Function Declarations
	CUDA Function Declarations (cont.)
	Calling a Kernel Function – Thread Creation
	A Simple Running Example Matrix Multiplication
	Programming Model: Square Matrix Multiplication Example
	Memory Layout of a Matrix in C
	Step 1: Matrix Multiplication A Simple Host Version in C
	Only One Thread Block Used
	Step 4: Kernel Function
	Step 2: Input Matrix Data Transfer (Host-side Code)
	Step 5: Kernel Invocation (Host-side Code)
	Step 3: Output Matrix Data Transfer (Host-side Code)
	Slide 45
	Slide 46
	Linking
	Debugging Using the Device Emulation Mode
	Device Emulation Mode Pitfalls
	Floating Point

