Ray Tracing CSCI 4239/5239 Advanced Computer Graphics Spring 2025

What is it?

- Method for rendering a scene using the concept of optical rays bouncing off objects
 - More realistic
 - Reflections
 - Shadows

How does it work?

Sources

- Ray Tracing from the Ground Up
 - Kevin Suffern
 - Excellent tutorial
 - Some working examples
 - http://www.raytracegroundup.com/
- nVidia
- Intel
- PBRT (Physically Based Ray Tracing)

Interactive Ray Tracing

- True ray tracing is VERY compute intensive
- Global problem scene complexity adds effort
- Generally there is no upper limit to computation
- Solutions are generally software based
 - Dedicated hardware provides 3-5x speedup
 - http://www.caustic.com/
 - OpenRL
 - Maya Plugins
- Compare nVidia RTX

nVidia Quadra Plex 1920x1024@30fps

nVidia Quadra Plex 1920x1024@30fps

How is it Done?

- Scene Description Language
 - Defines objects in scene
 - Geometry and properties
 - Lights
 - Eye position
- Determine color of individual pixels using ray tracing algoritms
 - Very hard to do real time

How ray tracing works

- Define scene and view
 - objects
 - lights
 - eye
- For each pixel
 - Shoot ray from pixel
 - Find nearest hit
 - Use object properties and lights to calculate color, or set to black if no hits

True Global Ray Tracing

- Light can bounce many times
 - Color changes at each bounce
 - Each bounce attenuates light
 - Light scatters in complex way:
 - Objects block light
- This simple scene took
 2 CPU years to render
 - Cornell Box
 - Area light and three boxes

Efficiency and Complexity

- Most ray tracers written in C++
 - Object Oriented paradigm for objects, rays, colors
 - Good efficiency/readability trade-off
- Efficiency is a HUGE deal
 - Pushing the envelope of hardware
 - Algorithm is global by definition
- Recursion and complexity
 - Need clean interface on objects

What is a Ray?

- $\mathbf{p} = \mathbf{o} + t \mathbf{d}$
- Types of rays
 - Primary rays
 - Secondary rays
 - Shadow rays
 - Light rays

Figure 14.2. (a) Direct illumination hits the surface of an object directly from a light source; (b) indirect illumination hits a surface after being reflected from at least one other surface.

Rays are one directional

Intersections

Figure 3.4. (a) Rays and their intersections with spheres; (b) ray-traced image of the spheres.

Intersecting a Sphere

- Simplest 3D object
 - Center
 - Radius
- Smooth normal
- Intersections
 - none
 - once
 - tangent
 - internal
 - twice

Figure 3.7. Ray-sphere intersections.

Figure 3.8. Further ray-sphere intersections.

Implicit Surfaces

General

-f(x,y,z)=0

Plane: Point **a** and Normal **n**

- (p-a)•n=0

Sphere

$$-(p-a)\bullet(p-a) - r^2 = 0$$

- Triangle
 - Limit plane

Interaction between Lights and Objects

Figure 14.2. (a) Direct illumination hits the surface of an object directly from a light source; (b) indirect illumination hits a surface after being reflected from at least one other surface.

Bouncing Rays from Surfaces

Figure 14.4. (a) Mirror reflection can be modeled by tracing a single reflected ray at each hit point; (b) modeling glossy specular light transport between surfaces requires many rays to be traced per pixel; (c) modeling perfect diffuse light transport between surfaces also requires many rays to be traced per pixel.

Light Reflection

• Diffuse (Lambertian) reflection

- Intensity Factor N•L

Figure 13.6. Light being scattered from

a perfectly diffuse surface.

- Specular reflection
 - $-R = 2(N \cdot L)N L$
 - Intensity Factor

Specular Reflected Light

- Assume the ray (from the eye) hits objects 1,2,3,... with reflection coefficients $\alpha_1, \alpha_2, \alpha_3, ...$
- Specular Reflection Color $\alpha_1(C_1 + \alpha_2(C_2 + \alpha_3(C_3 + ...)))$ $= \alpha_1C_1 + \alpha_1\alpha_2C_2 + \alpha_1\alpha_2\alpha_3C_3 + ...$
- Since light is assumed to be linearly additive, just keep track of α and add light along successive bounces of the ray
- White specular means $\boldsymbol{\alpha}$ can be a scalar