

Ray Tracing
CSCI 4239/5239

Advanced Computer Graphics
Spring 2025

What is it?
● Method for

rendering a scene
using the concept
of optical rays
bouncing off
objects
– More realistic
– Reflections
– Shadows

How does it work?

Sources
● Ray Tracing from the Ground Up

– Kevin Suffern
– Excellent tutorial
– Some working examples
– http://www.raytracegroundup.com/

● nVidia
● Intel
● PBRT (Physically Based Ray Tracing)

Interactive Ray Tracing
● True ray tracing is VERY compute intensive
● Global problem – scene complexity adds effort
● Generally there is no upper limit to computation
● Solutions are generally software based

– Dedicated hardware provides 3-5x speedup
– http://www.caustic.com/
– OpenRL
– Maya Plugins

● Compare nVidia RTX

nVidia Quadra Plex
1920x1024@30fps

nVidia Quadra Plex
1920x1024@30fps

`

How is it Done?
● Scene Description Language

– Defines objects in scene
● Geometry and properties

– Lights
– Eye position

● Determine color of individual pixels using
ray tracing algoritms
– Very hard to do real time

How ray tracing works
● Define scene and view

– objects
– lights
– eye

● For each pixel
– Shoot ray from pixel
– Find nearest hit
– Use object properties

and lights to calculate
color, or set to black if
no hits

`

True Global Ray Tracing
● Light can bounce many times

– Color changes at each bounce
– Each bounce attenuates light
– Light scatters in complex ways
– Objects block light

● This simple scene took
2 CPU years to render
– Cornell Box
– Area light and three boxes

Efficiency and Complexity
● Most ray tracers written in C++

– Object Oriented paradigm for objects, rays,
colors

– Good efficiency/readability trade-off
● Efficiency is a HUGE deal

– Pushing the envelope of hardware
– Algorithm is global by definition

● Recursion and complexity
– Need clean interface on objects

What is a Ray?
● p = o + t d
● Types of rays

– Primary rays
– Secondary rays
– Shadow rays
– Light rays

● Rays are one directional

Intersections

Intersecting a Sphere
● Simplest 3D object

– Center
– Radius

● Smooth normal
● Intersections

– none
– once

● tangent
● internal

– twice

Implicit Surfaces
● General

– f(x,y,z) = 0
● Plane: Point a and Normal n

– (p-a)n=0
● Sphere

– (p-a)(p-a) – r2 = 0
● Triangle

– Limit plane

Interaction between
Lights and Objects

Bouncing Rays from Surfaces

Light Reflection
● Diffuse (Lambertian)

reflection
– Intensity Factor NL

● Specular reflection
– R = 2(NL)N-L
– Intensity Factor 

Specular Reflected Light
● Assume the ray (from the eye) hits

objects 1,2,3,... with reflection
coefficients 1,2,3,...

● Specular Reflection Color
1(C1 + 2(C2+3(C3+...)))
= 1C1 + 12C2+123C3+...

● Since light is assumed to be linearly
additive, just keep track of  and add
light along successive bounces of the ray

● White specular means  can be a scalar

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

