Ray Tracing CSCI 4239/5239 Advanced Computer Graphics Spring 2025

What is it?

- Method for rendering a scene using the concept of optical rays bouncing off objects
	- More realistic
	- Reflections
	- Shadows

How does it work?

Figure 1. The ray-tracing process.

Sources

- Ray Tracing from the Ground Up
	- Kevin Suffern
	- Excellent tutorial
	- Some working examples
	- http://www.raytracegroundup.com/
- nVidia
- Intel
- PBRT (Physically Based Ray Tracing)

Interactive Ray Tracing

- True ray tracing is VERY compute intensive
- Global problem scene complexity adds effort
- Generally there is no upper limit to computation
- Solutions are generally software based
	- Dedicated hardware provides 3-5x speedup
	- http://www.caustic.com/
	- OpenRL
	- Maya Plugins
- Compare nVidia RTX

nVidia Quadra Plex 1920x1024@30fps

nVidia Quadra Plex 1920x1024@30fps

How is it Done?

- Scene Description Language
	- Defines objects in scene
		- Geometry and properties
	- Lights
	- Eye position
- Determine color of individual pixels using ray tracing algoritms
	- Very hard to do real time

How ray tracing works

- Define scene and view
	- objects
	- lights
	- eye
- For each pixel
	- Shoot ray from pixel
	- Find nearest hit
	- Use object properties and lights to calculate color, or set to black if no hits

True Global Ray Tracing

- Light can bounce many times
	- Color changes at each bounce
	- Each bounce attenuates light
	- Light scatters in complex way!
	- Objects block light
- This simple scene took 2 CPU years to render
	- Cornell Box
	- Area light and three boxes

Efficiency and Complexity

- Most ray tracers written in $C++$
	- Object Oriented paradigm for objects, rays, colors
	- Good efficiency/readability trade-off
- Efficiency is a HUGE deal
	- Pushing the envelope of hardware
	- Algorithm is global by definition
- Recursion and complexity
	- Need clean interface on objects

What is a Ray?

- $p = o + t d$
- Types of rays
	- Primary rays
	- Secondary rays
	- Shadow rays
	- Light rays

Figure 14.2. (a) Direct illumination hits the surface of an object directly from a light source; (b) indirect illumination hits a surface after being reflected from at least one other surface.

• Rays are one directional

Intersections

Figure 3.4. (a) Rays and their intersections with spheres; (b) ray-traced image of the spheres.

Intersecting a Sphere

- Simplest 3D object
	- Center
	- Radius
- Smooth normal
- Intersections
	- none
	- once
		- tangent
		- internal
	- twice

Figure 3.7. Ray-sphere intersections.

Figure 3.8. Further ray-sphere intersections.

Implicit Surfaces

• General

 $- f(x,y,z) = 0$

● Plane: Point **a** and Normal **n**

 $-$ (p-a) \cdot n=0

• Sphere

$$
-(\mathbf{p}\cdot\mathbf{a})\bullet(\mathbf{p}\cdot\mathbf{a})-r^2=0
$$

- Triangle
	- Limit plane

Interaction between Lights and Objects

Figure 14.2. (a) Direct illumination hits the surface of an object directly from a light source; (b) indirect illumination hits a surface after being reflected from at least one other surface.

Bouncing Rays from Surfaces

Figure 14.4. (a) Mirror reflection can be modeled by tracing a single reflected ray at each hit point; (b) modeling glossy specular light transport between surfaces requires many rays to be traced per pixel; (c) modeling perfect diffuse light transport between surfaces also requires many rays to be traced per pixel.

Light Reflection

• Diffuse (Lambertian) reflection

- Intensity Factor N.L

Figure 13.6. Light being scattered from a perfectly diffuse surface.

- Specular reflection
	- $R = 2(N-L)N-L$
	- Intensity Factor

Specular Reflected Light

- Assume the ray (from the eye) hits objects 1,2,3,... with reflection $coefficients$ $\alpha_1,\alpha_2,\alpha_3,\ldots$
- Specular Reflection Color $\alpha_1(C_1 + \alpha_2(C_2 + \alpha_3(C_3 + ...)))$ $= \alpha_1 C_1 + \alpha_1 \alpha_2 C_2 + \alpha_1 \alpha_2 \alpha_3 C_3 + \dots$
- Since light is assumed to be linearly additive, just keep track of α and add light along successive bounces of the ray
- White specular means α can be a scalar