Fog CSCI 4229/5229 Computer Graphics Summer 2024 ## Justification - Light is distorted with distance - Fog, haze, smoke, snow, dust, suspended particles and pollution limits visibility - Turbulence and other thermally driven effects cause refraction and distortion - Primarily applies to outside scenes - Critical under water and during precipitation - Smoke filled room indoor example #### Implementation in Computer Graphics - Blend object color with background color - More of background with greater distance - Distance measured from observer - Transition with distance generally nonlinear - Cutoff distance objects beyond this are obscured - Background color typically should match fog color (unless completely covered by objects) ## Fog Equations in OpenGL - $C = f C_{obj} + (1-f) C_{fog}$ - $f = (d_{end}-d)/(d_{end}-d_{start})$ [limited to 0-1] - $f = \exp(-\gamma d)$ - $f = \exp(-\gamma^2 d^2)$ - d is the distance from the observer - d_{start} and d_{end} is the range of linear fog - γ is the fog density ## Fog in OpenGL - glEnable(GL_FOG) - glFog* - GL_FOG_MODE - GL_LINEAR, GL_EXP, GL_EXP2 - GL FOG COLOR (C_{fog}) - GL_FOG_DENSITY (γ in GL_EXP & GL_EXP2) - GL_FOG_START (d_{start} in GL_LINEAR) - GL_FOG_END (d_{end} in GL_LINEAR)