

Application of Linux
Single Board Computers

to Amateur Radio
Willem A Schreüder AC0KQ

willem@prinmath.com

Indian Peaks Radio Club
December 27, 2016

http://www.prinmath.com/ham/talks/

http://www.prinmath.com/ham/talks/

Talk Outline

● Why Linux SBCs
● Getting Started
● BPQ Packet/RMS Gateway/APRS iGate
● AllStarLink Repeater
● Control and Monitoring
● SDR
● Don’t freak out about the number of slides

Single Board Computers

● Full Linux boxes (today's topic)
– Raspberry Pi

– Beaglebone

● Microcontrollers (not covered)
– Arduino

– PICAXE

– BASIC Stamp

Why Linux SBCs?

● Runs a full Linux OS
● Usable stand alone computer or server
● Built in connectivity

– Ethernet networking

– USB and serial

– General purpose IO

● Low power (5V 1A)
● Expandable using daughter boards
● Inexpensive ($50 for a working system)

SBC Pros and Cons

● Pros
– Inexpensive

– No moving parts

– 5V power

– Expandable

● Cons
– SD cards corrupted by bad power

– SD card is not a great hard disk

Raspberry Pi

● Most Popular
● Best supported
● rPi3 most powerful
● Lots of USB ports
● Lots of daughterboards
● No analog inputs
● $35 plus SD card

Raspberry Pi models

● Raspberry Pi
– A/A+ 700 MHz CPU & 256MB SDRAM, 1xUSB

– B 700 MHz CPU & 512MB SDRAM, 2xUSB, Ethernet

– B+ 700 MHz CPU & 512MB SDRAM, 4xUSB, Ethernet

– 2B 900 MHz Quad A7 & 1GB SDRAM, 4xUSB, Ethernet

– 3B 1.2GHz Quad 64bit & 1GB SDRAM, 4xUSB, Ethernet

● Compute Module
– 700MHz CPU & 512MB SDRAM

● Zero
– 1GHz CPU & 512MB SDRAM

Raspberry Pi 2B

Beagle Bone

● Less well supported
● Onboard eMMC
● Power & Reset buttons
● More GPIO pins
● 8 analog inputs
● $50 street price

Beaglebone Models

● White
– Original 720 MHz A8

● Black
– Most Popular 1GHz A8

● Green
– Same CPU as Black

– No barrel power, two Grove connectors

● Industrial
– Black with extended temperature range

Beagle Bone Black

Other Linux SBCs

● Examples
– Intel Edison

– VoCore

– Odroid

● Less well supported
● Fewer peripherals
● Sometimes better performance
● Mostly higher priced

Power and Storage

● Runs on 5V DC
– Needs clean power

– Draws 0.5-1.0 A without daughter boards

● Micro SD card storage
– Finite life

– Marginal performance

– Bad power kills SD

Must Have Accessories

● Micro SD card
– Faster is better

● Class 10
● UHS 1
● UHS 3

– At least 4GB
● 16GB is ample

● Real time clock
– PiFace Shim RTC

– Adafruit DS1307

– Needed if no
network (NTP)

Nice to have

● Official Raspberry 7” Touchscreen

Power Control

● Andice Labs
Powercape

● Adafruit
Powerboost
1000C

● Charges and
boosts 4V
from LIPO
battery

TNC-X/Pi/Black

● Designed by John Hansen W2FS
● Based on PIC Microcontroller
● MX614 Bell 202 modem chip
● KISS interface

– Serial

– USB

– I2C

Why the BB/TNC-Black?

● BBB has 5 serial ports
● Mechanically stable stacked capes
● Powercape battery backup
● Lots of pins for

site monitoring
● 50% more

expensive

Part 1
Getting Started on the

Raspberry Pi

rPi Materials

● Raspberry Pi 2B or 3B
● Micro SD card
● 5V 1A power supply
● USB A to micro USB B cable
● Ethernet cable
● Direct connection

– Monitor or TV

– HDMI cable

– USB keyboard and mouse

Raspberry OS Choices
● https://www.raspberrypi.org/downloads/
● Debian derivatives are most popular

– Raspbian (Official Supported OS)

– Alternatives are
● NOOBS (New Out Of the Box Software)
● Ubuntu Mate (Ubuntu Desktop)
● Windows 10 IOT (a.k.a. YGBSM)
● several others, some not Linux based

● Debian 8 (Jessie) adopts systemd
– This changes how system programs are run

● No more /etc/init.d/XXX and /etc/inittab
● Control programs with systemctl

Burning the Image

● Unzip image
– 2016-09-23-raspbian-jesse.img

● Linux or OSX command line
– dd if=2016-09-23-raspbian-jesse.img of=/dev/mmcblk0

– sync;sync

● Windows
– Download Win32DiskImager

– Select image file name

– Select SD card drive letter

– Click Write

First boot with Pixel

Raspberry > Preferences >
Raspberry Pi Configuration

Remote Access

● Do ifconfig from the keyboard
● Look for hostname raspberrypi

– Assign a reserved IP address and add DNS

● Advantages of using ssh
– Can access the device from anywhere

– Automatic logins using authorized_keys

– Text based menus work great remotely

Configuring rPi

● Plug in keyboard, mouse and screen
– Menu >Preferences > rPi Configuration

● Plug in ethernet cable and locate the IP
address
– Default hostname is raspberrypi

– ssh pi@XXX.XXX.XXX.XXX
● password raspberry

mailto:pi@XXX.XXX.XXX.XXX

Running raspi-config

Expand file system

Change the Password

Set timezone 1

Set timezone 2

Advanced Options

Set Hostname

Disable serial login

Reboot and log in again

Add user willem

Part 2
BPQ BBS/RMS/iGate

What is BPQ?

● NET/ROM compatible Packet Switch
– Multiple ports

● As many I2C or serial ports as
you have available

– Multiple protocols
● Packet, Pactor, IP

– Multiple functions
● BBS, Chat, APRS

What can we use BPQ for?

● AX25 (Packet) Access point
● Bulletin Board System (BBS)
● Radio Message Server (RMS)
● APRS Internet Gateway
● Application Gateway

BPQ Web Configuration

BBS Message Page

Message Forwarding

APRS Page

Stations Heard on RF

Station Map

How does it work?

● BPQ is a software program
– Runs on most computers

– Somewhat complex configuration file

● Connects to radio via Terminal Node
Controller (TNC)
– Typically serial connection

● Interconnects via IP
● Built-in BBS, iGate, Chat server, ...

rPi/BPQ vs. KPC3+ BBS

● rPi/BPQ Pros
– Lower cost ($100)

– Much larger capacity (GB vs. kB)

– More ports (multiple RF, serial and IP)

– Sophisticated forwarding

● rPi/BPQ Cons
– Higher current draw

– Less tolerant of bad power

Complaint: Hard to set up BPQ

● BPQ is very sophisticated, and
that necessarily adds complexity

● Solutions:
– Use bpq-config to get started
– Web interface for BBS etc.
– Join a support group

● Yahoo BPQ32
● RMHAM

Why so rPi and BBB centric?

● BPQ is software – runs anywhere
– Supported on Windows, OSX, Linux
– Best run as a headless server

● rPi and BBB are
– Inexpensive
– Reliable Linux boxes
– DC powered
– TNC/Pi & TNC/Black daughter boards
– All the cool kids have one

Why the rPi/TNC-Pi?

● Extremely well supported
● Complete package with screen

Brief history of BPQ

● Written by John Wiseman G8BPQ
● Originally called BPQCODE
● Became BPQ32 in late 90s
● Ported to OSX/Linux in 2000s
● Ported to Raspberry Pi/TNC-PI and Beagle

Bone Black/TNC-Black

Building the TNC kit

● It takes a few hours to build
– Quality soldering iron time

– Simple, excellent instructions

● Test it
– Check voltages, insert ICs

– LEDs should flash on power up

– Configure OS and BPQ

● John W2FS provides outstanding after-
sales support

Selecting a Username

● Default user name
– Raspberry Pi = pi

– Beaglebone Black = debian

● The default user name is good for BPQ and
similar programs with multiple users

● Create a login for each user
● Create subdirectories for programs like

BPQ which will clutter the home directory

Quick Start
http://www.prinmath.com/ham/howto/quickstart/

bpq-config installs programs

bpq-config resolves conflicts

Quick Start

Fill the required fields

Write Configuration

Start BPQ

Options after Startig BPQ

Browse to BPQ node port 8008
(if you configured a different port, use it instead)

BPQ Ports

Click Mail Server Pages

BBS Configuration
(bpq-config set most of these in linmail.cfg)

BBS Users
(bpq-config added RMS and telnet users)

User RMS is WinLink2000

Forwarding to Winlink is Enabled

Connect out via RF

Connect in via RF (as AC0KQ)

Connect via RF to WinLink

BBS Messages

General BBS Users

WinLink User Download

Forwarding BBS

Forwarded Users

RF > N0SZ & AXIP > K0NTS-1

`

Manual Configuration Steps

Node Configuration

Port Configuration

Port Type

Device Type
(Devices description is board specific)

Device Number

User Configuration

AXIP Map

Setting up an iGate

● This iGate setup is on a BeagleBone Black
– The only difference with an rPi is the serial

port names in the Port section

● The Node setup is the same as what was
done previously
– Some but not all the parameters are relevant

● Ports are mapped as Packet or APRS in
port configuration
– You can have both Packet and APRS ports on

the same BPQ node

Emable iGate and set SSID,
Symset, Symbol, Lat/Long

Select APRS2 Gateway
(bpq-config generates password automatically)

iGate Add Port Configuration

Set Port Type to APRS

Set Serial Port
(Note that this is a Beaglebone so 4 ports)

Select Serial Port Number

Select Serial Port Number

APRS Frequency 1

APRS Frequency 2

Node Page Update

APRS Main Page

APRS RF Stations

APRS Station Map

Report on aprs.fi

Data graph on aprs.fi

BPQ Port 1

Port 1 is for BBS/RMS

BPQ Port 2

Port 2 is for APRS

BPQ Ports Page

About bpq-config

● bpq-config is designed to get you started
– It covers most installations, but not all

● It keeps its on configuration file .bpqconfig
– Easier to parse

– Hand edits are lost when using bpq-config

– Version 1.1 may parse bpq32.cfg instead

● This is new software
– Bug reports and improvements are welcome

– Patches are even more welcome

Part 3
AllStarLink Repeater

What is AllStarLink?

● Asterisk VOIP software for radio
● Interfaces with radio via URIx

– CM119 USB audio chip

– DB25 connector

● Can roll your own with
equivalent fob

Installing AllStarLink

● Download from www.hamviop.com
– Burn image to SD card

● Program your radio/repeater
– Set radio to encode/decode CTCSS

– On Motorola set accessories to output COS & PL
on pin 8

● Tune a receiver to to the radio frequency
● Power up rPi

– Allison will announce the IP address

http://www.hamviop.com/

Initial Login (password is root)

Skipped a dozen slides of options

Done

Set Levels

Set Receive Levels

/etc/asterisk/simpleusb.conf

[usb]
eeprom=0
hdwtype=0
rxboost=1
carrierfrom=usb
ctcssfrom=usb
txmixa=voice
txmixb=no
invertptt=0
duplex=0
plfilter=yes
deemphasis=no
preemphasis=yes
rxaudiodelay=0

● Configuration for Motorola SM50

lsnode

Incoming Audio

Part 4
Control and Monitoring

Raspberry Pi Header

`

Pins are multiplexed

● Pins configured for different uses
● GPIO 14&15 <=> UART TxD/RxD
● GPIO 2&3 <=> I2C SDA&SCL
● GPIO 7&8&9&10&11 <=>

SPI MOSI&MISO&SCL&CE0&CE1
● GPIO 18&19 <=> PWM 0&1
● 16-26 GPIO pins

Raspberry Pi Serial

● Single serial port
– /dev/ttyAMA0

● Speeds up to 115200 bps
● TTL level signals
● By default connected to getty

Raspberry Pi I2C

● Inter-Integrated Circuit
– Serial bus (a.k.a SMBus)

● Default speed 400,000 bps
● rPi has single external I2C bus

– 127 devices

● Control lines
– SDA (data)

– SCL (clock)

Enable I2C with raspi-config 1

Enable I2C with raspi-config 2

I2C devices

● TNC-Pi
● INA219 current sensor
● Temperature/pressure/RH sensors
● LCD displays
● Accelerometers
● Digitial I/O pins
● Analog<>Digital I/P pins

SPI bus

● Serial Peripheral Interface
● Signals (supports 2 slaves)

– MasterOutSlaveIn

– MasterInSlaveOut

– Clock

– CE0 (SS1)

– CE1 (SS2)

● Speeds up to 250 MHz

raspi-config enable SPI

SPI Devices

● Faster than I2C, but uses more pins
● Same devices as I2C, but adds

– GPS

– Ethernet/WiFi/Bluetooth/RFID

– Memory

● Full duplex

Beagle Bone Black

Pins are multiplexed

● Default configuration
– Power&Reset Buttons

– 4 serial ports

– 8 analog inputs (1.8V max)

– 1 external I2C bus (127 devices)

– 19-128 GPIO pins

– Switched 5V/3.3V DC

Limitations

● Pins connect directly to CPU
– Long wires are CPU antennas!

● rPi & BBB GPIO Pins are 3.3 V
– Max current 16 mA in or out

– Max combined output current 50 mA

● BB Analog In Pins are 1.8V

Device Tree

● Unix: Everything is a File
● /sys maps to hardware

– In kernel virtual file system

● Get status by reading
● Set status by writing

Reading analog pins on BBB

● Enable analog pins in device tree
echo cape-bone-iio>/sys/devices/bone_capemgr.*/slots

● Read value of pin AIN0 in mV
cat /sys/devices/ocp.*/helper.*/AIN0

580

● Voltage on pin AIN0 is 0.580V

Show pin voltages in Python 1

#!/usr/bin/python

for i in range(0,8):
 # Snarf file
 fd = open("/sys/devices/ocp.3/helper.16/AIN%d" % i)
 text = fd.read()
 fd.close()
 # Decode voltage
 V = float(text)/1000
 # Print voltage
 print "AIN%d = %5.3fV" % (i,V)

Show pin voltages in Python 2

./aread
AIN0 = 1.740V
AIN1 = 1.481V
AIN2 = 1.645V
AIN3 = 0.867V
AIN4 = 0.589V
AIN5 = 0.709V
AIN6 = 0.852V
AIN7 = 1.678V

Limitations

● Maximum voltage is 1.8V
● Use a voltage divider to increase

– Use 1% or better resistors

– Max 1 kohm for lower leg

● No analog in on rPi
– use MCP3008 or similar and SPI

Assigning pins to GPIO

● /sys/class/gpio/export
– Maps pin to GPIO

– echo 18 > /sys/class/gpio/export

● /sys/class/gpio/unexport
– Removes pin from GPIO map

– echo 18 > /sys/class/gpio/unexport

● Root access required

Manipulating GPIO

● When mapped to GPIO, a new directory is
created for that pin
– /sys/class/gpio/gpioXX

● Files in this directory controls pin
– direction = in or out

– value = 0 or 1

Checking pin value

● In or out?
– cat /sys/class/gpio/gpio18/direction

● High or low?
– cat /sys/class/gpio/gpio18/value

Changing the GPIO direction

● Set pin for input
– echo in > /sys/class/gpio/gpio18/direction

● Set pin for output
– echo out > /sys/class/gpio/gpio18/direction

Changing the GPIO value

● Set pin voltage high
– echo 1 > /sys/class/gpio/gpio18/value

● Set pin for output
– echo 0 > /sys/class/gpio/gpio18/value

python access to pins

● Import the GPIO package
import Rpi.GPIO as GPIO

● Name the pins by their GPIO#
GPIO.setmode(GPIO.BCM)

● Name pins by their board number
GPIO.setmode(GPIO.BOARD)

python set pins for in/out

● Set pin 18 for output
GPIO.setup(18,GPIO.OUT)

● Set pins 18,23,24&25 for output
GPIO.setup([18,23,24,25],GPIO.OUT)

● Set ping 18 for input
GPIO.setup(18,GPIO.IN)

python set/get pin value

● Set pin 18 high
GPIO.output(18,1)

● Set pin 18 low
GPIO.output(18,0)

● Read ping 18 value
p18 = GPIO.input(18)

Input pin status

● Set ping 23 to input with pull up

● GPIO.setup(24,GPIO.IN,pull_up_down=GPIO.PUD_UP)

– ground to activate

● Set pin 24 to input with pull down

● GPIO.setup(24,GPIO.IN,pull_up_down=GPIO.PUD_DOWN)

– Pull up to 3.3V

● A 1k series resistor is typically a good idea

Important Limitations

● GPIO pins are 3.3 V
● Current limited to 16mA
● Opto-isolate

relays

I2C Example: Voltage&Current

● TI INA219 I2C high side monitor
● Max 26V
● Current Sense

40-320mV
shunt

● Chip $2.50
● Adafruit $10

Adafruit Breakout

● I2C address 0x40 0x41 0x42 0x43
– solder jumpers

● 0.1 ohm shunt
reads to 3.2A

Python Usage

import Subfact_INA219 as INA219

ina = INA219()

V = ina.getBusVoltage_V()

mA = ina.getCurrent_mA()

Reading 1wire Temperatures

● 1wire uses a single data bus
● Each device has unique address
● DS18S20 is a TO-92 temperature sensor

with 0.5C resolution for $2.50
● Can use parasite

power (but not on rPi)
Use 4k7 pullup

Getting 1wire output

● ls /sys/bus/w1/devices
10-000802fba50d
10-000802fbe2f6
10-000802fbf0f9
w1_bus_master1

● 10 means it is a DS18S20 temp, the test is a
unique serial number

Getting the Data

cat /sys/bus/w1/devices/w1_bus_master1/w1_master_slaves

10-000802fbe2f6

10-000802fbf0f9

10-000802fba50d

cat /sys/bus/w1/devices/10-000802fbe2f6/w1_slave

2c 00 4b 46 ff ff 0e 10 17 : crc=17 YES

2c 00 4b 46 ff ff 0e 10 17 t=21875

Temperature of first sensor is 21.875 OC

Reading Temps in Python 1

Snarf the slave list file
fd=open("/sys/bus/w1/devices/w1_bus_master1/w1_master_slaves")
text = fd.read()
fd.close()
Split text on line breaks
slaves = filter(None,text.split("\n"))
Sort so that order is predictable
slaves.sort()

Reading Temps in Python 2
Blank dictionary
temps = {}
Loop over devices
for slave in slaves:
 if slave=="": continue
 # Snarf device file
 fd = open("/sys/bus/w1/devices/"+slave+"/w1_slave")
 text = fd.read()
 fd.close()
 # Split lines
 lines = text.split("\n")
 words = lines[1].split(" ")
 # Get temperature
 C = float(words[9][2:])/1000
 F = 9*C/5+32
 # Add result to dictionary
 temps[slave] = "%.1fF" % F

Observations

● Temperature conversion occurs when you
cat the file
– About 700mS per device

● Temperature reads are best done using a
separate thread

● rPi 1wire support in raspi-config

Part 5
Software Defined Receiver

ADSB SDR Receiver

● Receiver based on RTL2832 USB
● About $20 on Amazon
● Also used in

many ham related
SDR projects

Software Build

Build and install rtl-sdr module and
software

git clone git://git.osmocom.org/rtl-sdr.git
cd rtl-sdr
mkdir build
cd build
cmake ../ -DINSTALL_UDEV_RULES=ON
make
cd ..

/usr/local/bin/rtl_tcp is a TCP server
for remote monitoring

dump1090 Build

Build and install dump1090 and
related software

git clonegit://github.com/MalcolmRobb/dump1090.git
cd dump1090
make
cd ..

Running web interface

● ./dump1090 --net --lon -105 --lat 39
--net enables web interface port 8080

--lon and –lat sets location

● Run at boot from rc.local

Running

Other SDR Projects

● The rPi 3 is a 1.2GHz 64 bit quad core
machine with 1GB memory
– Processing power to do cool stuff

● Adafruit
Freq Show

● GNU radio
Eric Schneider
RMHAM U
April 15, 2017

RasHAWK

SDR TCP server

● Start rtl_tcp as root
– rtl_tcp -a <ipaddress>

– Default port is 1234 (set with -p)

● Connect to it with an SDR program such as
SDR# or GNU Radio on a device with
enough power to process the data

SDR# Screenshot

Part 6
Other Projects

rPi / TNC-Pi / screen / xastir

SmokePi (SmokePing rPi)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169

